Dynamics Problems Review

1. A net force of 41.6 N accelerates an object at $4.2 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the object? (9.9 kg)
2. A toy car, starting from rest, moves 5.2 m in 3.2 s . If a 0.4 N force acts on it,
a) what was its acceleration? $\left(1.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
b) what was its mass? $(0.4 \mathrm{~kg})$
3. A dry ice puck, mass 1.5 kg , is accelerated $1.8 \mathrm{~cm} / \mathrm{s}^{2}$ by a force. A rock is placed on top of the puck and the combined mass is accelerated by the same force resulting in an acceleration of $0.8 \mathrm{~cm} / \mathrm{s}^{2}$. Determine the rock's mass. (1.9 kg)
4. The force of friction on an object is 4.8 N . If the object has a mass of 12.7 kg and is accelerated $1.2 \mathrm{~m} / \mathrm{s}^{2}$. What is the pulling force? $(20 \mathrm{~N})$
5. A sled, mass 7.8 kg , is pulled over snow with a force of 5.2 N . If the acceleration of the sled is $0.61 \mathrm{~m} / \mathrm{s}^{2}$, determine the frictional force. $(-0.44 \mathrm{~N})$
6. A car located on a level highway has a mass of 400 kg . The frictional force on the car is 750 N . What acceleration will a force of $2.25 \times 10^{3} \mathrm{~N}$ produce on the car? $\left(3.75 \mathrm{~m} / \mathrm{s}^{2}\right)$
7. A 20 kg sled is pulled along level ground. The sled's rope makes an angle of 60° with the snow-covered ground. If the pull on the rope is 180 N and the friction is 15 N , what is the acceleration of the sled? $\left(3.75 \mathrm{~m} / \mathrm{s}^{2}\right)$
8. A red wagon, mass 5.6 kg is pulled on level ground by a force of $23 \mathrm{~N}, 30^{\circ}$ with the ground. If the frictional force is 7.5 N , determine the acceleration of the wagon. $\left(2.2 \mathrm{~m} / \mathrm{s}^{2}\right)$
9. A constant force of 20 N is applied at an angle of 40° to a 4 kg block which rests on a horizontal surface gives the block a velocity of $8 \mathrm{~m} / \mathrm{s}$ in 2.5 s . Determine the force of friction between the block and the surface. Assume the block was initially at rest. (-2.5 N)
10. A constant force of 16 N is applied at an angle of 33° to a 2.5 kg block which rests on a horizontal surface giving the block a velocity of $6 \mathrm{~m} / \mathrm{s}$ in 1.5 s . Determine the force of friction between the block and the surface. Assume the block was initially at rest. (-3.4 N)
11. A dog sled with a mass of 80 kg is pulled by two dogs. The first dog pulls on the sled with a force of $37.5 N[N E]$ while the second pulls with a force of $45 N\left[21^{\circ} S\right.$ of $\left.E\right]$. If the frictional force on the sled is $7.5 N$, determine the acceleration of the sled. ($0.77 \mathrm{~m} / \mathrm{s}^{2}\left[8.6^{\circ} \mathrm{N}\right.$ of $\left.E\right]$)
12. A 1000 kg barge is pulled upstream by ropes attached to two horses walking along the opposite sides of a canal. If each horse pulls with a force of 350 N at an angle of 45° with a line parallel to the shore and the resistance of the barge through the water is 50 N , determine the acceleration of the boat. ($0.44 \mathrm{~m} / \mathrm{s}^{2}$ [Upstream])
13. A 12.5 kg mass is pulled on by two forces, \vec{F}_{1} and \vec{F}_{2}. Determine the acceleration of the mass if the force of friction is $5.0 \mathrm{~N} . \vec{F}_{1}=10.0 \mathrm{~N}\left[30.3^{\circ} \mathrm{N}\right.$ of W$] ; \vec{F}_{2}=15.0 \mathrm{~N}\left[19.7^{\circ} \mathrm{S}\right.$ of W$]$ ($1.42 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$)
14. An object is pulled by two forces, the first $40 N[N E]$ and the second $30 N\left[37^{\circ} S\right.$ of $\left.E\right]$ If the acceleration of the object is $1.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass of the object? (35.5 kg)
15. An object is pulled by two forces, both of magnitude 70 N . The first acts at $25^{\circ} \mathrm{W}$ of N and the second at $25^{\circ} E$ of N. If the acceleration of the object is $2.2 \mathrm{~m} / \mathrm{s}^{2}$ and the frictional force acting is 26.9 N , what is the mass of the object? (45.4 kg)
16. An object is being lowered by two ropes. The tension in each is $54 N$ and each rope makes an angle of 30° with the horizontal. If the object has a mass of 10.0 kg , what is its acceleration? $\left(-4.4 \mathrm{~m} / \mathrm{s}^{2}\right)$
17. An object is being raised by two ropes. The tension in each is $88 N$ and each rope makes an angle of 21° with the vertical. If the object has a mass of 13.5 kg , what is its acceleration? ($2.4 \mathrm{~m} / \mathrm{s}^{2}$)
18. A fish hangs from a spring scale supported from the roof of an elevator.
a) If the elevator has an upward acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ and the scale reads 200 N , what is the true force of gravity on the fish? $(178 N)$
b) Under what circumstances will the scale read 150 N ? $\left(\vec{a}=-1.55 \mathrm{~m} / \mathrm{s}^{2}\right)$
c) What will the scale read if the elevator cable breaks? (0)

